

Stereotactic Brain Biopsy

frame-based versus frameless neuronavigation-assisted technique

AZIENDA OSPEDALIERO UNIVERSITARIA PISANA

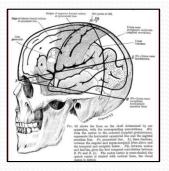
Dr Andrea Peluso

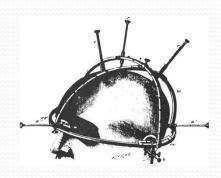
Introduction

Growing understanding of biological and biomolecular characteristics of brain lesions confirms the necessity of the most complete histopathological diagnostic data

At the same time modern neurosurgical practice promotes reduction of invasiveness and patient's discomfort

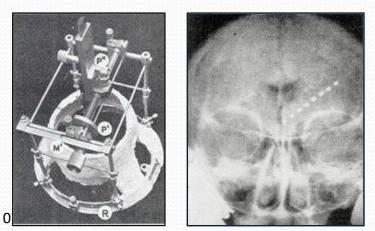
Despite diffusion of high magnetic fields and complex imaging diagnostic, brain biopsy has still a role for unresectable brain lesions

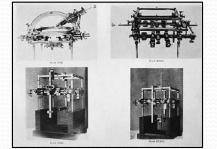

Progressive implementation of neuronavigation technologies allowed diffusion of frameless bioptic techniques


As the last evolution of brain biopsy, a better understanding of their potentials and limits is needed, compared to standardized stereotactic procedures

Historical Background

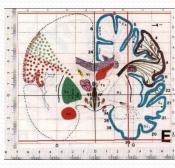
Zernov 1889: encephalometer





Craniometric school 1890 – 1910 Broca, Wilson, Kroenline, Kholer, Kocher

Horsley and Clarke 1908: stereotaxis



Spiegel and Wycis 1947: individual reference points

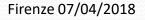
Firenze 0

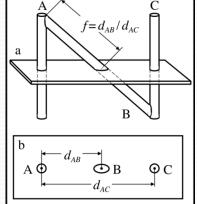
Historical Background

Talairach 1949: AC-PC, Stereotactic atlas

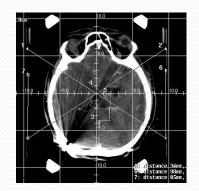
1950 – 1960 Riechert-Wolff, Narabayashi, Todd-Wells

1949 Leksell: arc-radius system, stereotactic arc

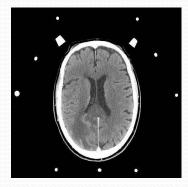

Radiosurgery


'70 Computerized Tomography: direct target identification on tomographic images New applications

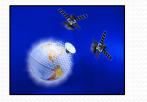
1978 Brown: N-localizer and Cosman-Roberts-Wells

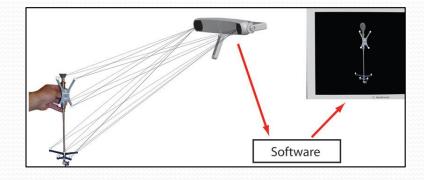


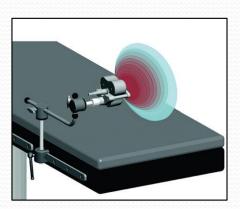
Stereotactic devices



Cosman-Roberts-Wells stereotactic frame




Neuronavigation


- Merging of radiologic virtual space and patient's anatomical physical space
- Tracing of navigable instruments, their position and orientation
- Continuous updating of instruments position in the anatomical space

Infrared optic system

Electromagnetic system

Role of cerebral biopsy

Reliability of brain biopsy

- Diagnostic yield 88,8 100%
- Diagnostic accuracy 57 89%

High Grade Gliomas

Assessment of biomolecular characteristics for definition of prognosis in unresectable lesions

<u>Low Grade Gliomas</u> Increasingly limited role: contraindications or unresectability Risk of downgrading and undertreatment Targeting supporting techniques (PET, spectroscopy, perfusion study)

<u>Other cerebral lesions</u> Limited role for brain metastasis Diagnostic definition in cerebral lymphoma

Clinical study

Since 2014 introduction of neuronavigation-assisted technique at our department

Frameless neuronavigation techniques advantages

- Unnecessary centering CTscan
- Reduced discomfort due to stereotactic frame
- No rigid head fixation with EM procedure
- Easier anesthesiologic management

Aim of the study:

- Assessment of reliability of the procedure in terms of diagnostic yield and safeness compared to standard stereotactic procedures
- Identification of possible limits and advantages
- Comparison with literature data

141 bioptic procedures, July 2011 – May 2017

Presumed oncologic lesions indefinable by clinical and radiological data

Indications:

- Deep cerebral lesions
- Direct functional areas involvement
- Multiple lesions
- Major comorbidities
- Patient's refusal to resective surgery

Neuroradiologic evaluation and assisted targeting

Conventional stereotactic procedure

Frame positioning

Centering CT scan

Coordinates determination

Burr-hole, durotomy

Insertion of biopsy needle and sampling

Closure procedure and frame removal

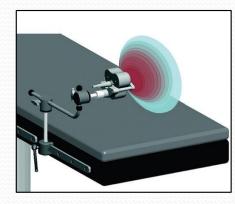
Firenze 07/04/2018

Leksell/Cosman-Roberts-Wells frame

mounting: Probe Carrier Anterior or Posterior (Trunion Rings are in the left-to-right position)					
A-P Lateral Vertical Ring Angle Arc Angle					
-15.0 mm	-9.7 mm	-21.1 mm	61.2 A °	14.9 L °	

Semisitting position

Set up of stereotactic arc


Navigation-assisted technique

StealthStation AxiEM Medtronic

EM stylet

J Neurosurg Pediatrics 2:430-434, 2008

The use of noninvasive electromagnetic neuronavigation for slit ventricle syndrome and complex hydrocephalus in a pediatric population

Clinical article

SIMON CLARK, PH.D.,^{1,2} MEHARPAL SANGRA, M.R.C.S.,¹ CAROLINE HAYHURST, M.R.C.S.,² JOTH KANDASAW, M.R.C.S.,² MICHAEL JENKINSON, PH.D.,² MAGGIE LEE, M.R.C.S.,² AND CONOR MALLUCCI, F.R.C.S.(SN)^{1,2}

JNS

TECHNICAL NOTE

Neuronavigated percutaneous approach to the sphenopalatine ganglion

Nicola Benedetto, MD, PhD, and Paolo Perrini, MD, PhD

Neurosurgical Department, Azienda Ospedaliero Universitaria Pisana-AOUP, Pisa, Italy

OPERATIVE TECHNIQUES

Syed S. Azeem, M.D. Department of Neurological Surgery, Loyola University Medical Center, Maywood, Illinois

T. C. Origitano, M.D., Ph.D. Department of Neurological Surgery, Loyola University Medical Center, Maywood, Illinois

VENTRICULAR CATHETER PLACEMENT WITH A FRAMELESS NEURONAVIGATIONAL SYSTEM: A 1-YEAR EXPERIENCE

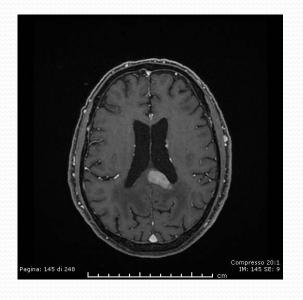
Navigation-assisted technique

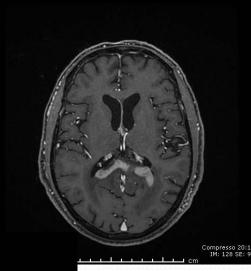
Trajectory Guide Kit

TUMOR

Instrumentation Assessment

Stuart E. Harrisson, MRCS David Shooman, MRCS Paul L. Grundy, MD, FRCS


Paul L. Grundy, MD, FRCS Department of Neurosurgery, Wesser Neurological Centre, Southampton Univ Verity Hospital Trust, Southampton, United Kingdom

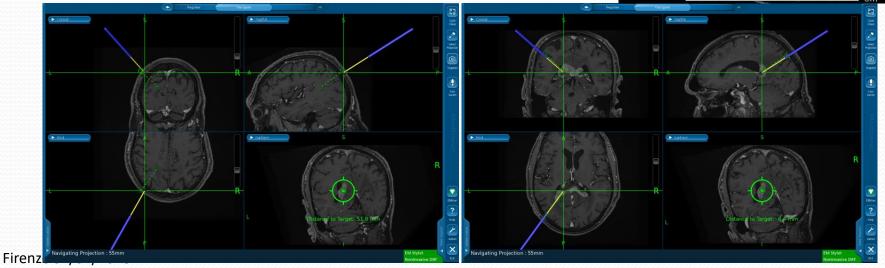


Clinical case

MM, male, 72yo Confusion and right visual field deficit

Clinical case

DIAGNOSI:


Localizzazione cerebrale di linfoma derivato da linfociti B periferici, istotipo diffuso a grandi cellule, con caratteri immunofenotipici (v. infra) del sottotipo "activated B cell-like" (ABC/Non-GC, sec. gli algoritmi di Colomo, Hans e Muris) (1).

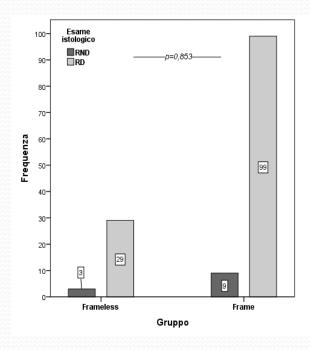
Immunofenotipo: CD20+, bcl2+, bcl-6+, MUM-1/IRF-4+, c-myc positivo (nel 40% delle cellule neoplastiche), CD10-, CD30-, ciclina D.1-

Attività proliferativa (monoclonale MIB-1): 90%.

Patients population

141 patients Mean age 65 (24 – 84) F:M=72:68 Two groups

- Frame
- Frameless


Lesions location

	Frameless		Fr	ame	т	от
	N° (%)	Age (mean/SD)	N° (%)	Age (mean/SD)	N° (%)	Age (mean/SD)
F	17 (53,1)	61,47/9,95	55 (50,5)	66,76/12,31	72 (51,1)	65,51/11,94
м	15 (46,9)	64,0/10,37	54 (49,5)	64,61/12,12	69 (48,9)	64,48/11,69
тот	32 (100)	63,0/10,1	109 (100)	66,0/12,20	141 (100)	65,0/11,79

Location	N° (%)
Corpus callosum	45 (31,91)
Internal capsule/White matter	30 (21,28)
Diencephalum (Thalamus/Basal ganglia)	20 (14,18)
Multiple	17 (12,07)
Lobar/multilobar	16 (11,34)
Insula	13 (9,22)
ТОТ	141 (100)

Diagnostic Yield Results

Histologic diagnosis	Frame (%)	Frameless (%)	тот (%)
High Grade Glioma	52 (48,15)	20 (62,5)	72 (51,43)
Low Grade Glioma	27 (25)	0	27 (19,29)
Lymphoma	11 (10,18)	7 (21,87)	18 (12,86)
Metastasis	3 (2,78)	1 (3,13)	4 (2,86)
Progressive Multifocal Leukoencephalopathy	3 (2,78)	0	3 (2,14)
Infection	2 (1,85)	0	2 (1,43)
PNET	0	1 (3,13)	1 (0,71)
Granulomatous vasculitis	1 (0,93)	0	1 (0,71)
Non diagnostic	9 (8,33)	3 (9,37)	12 (8,57)
ТОТ	108 (100)	32 (100)	140 (100)

Non diagnostic	
Necrotic material	3
Aspecific inflammatory infiltrate	3
Inadequate/Insufficient sampling	6

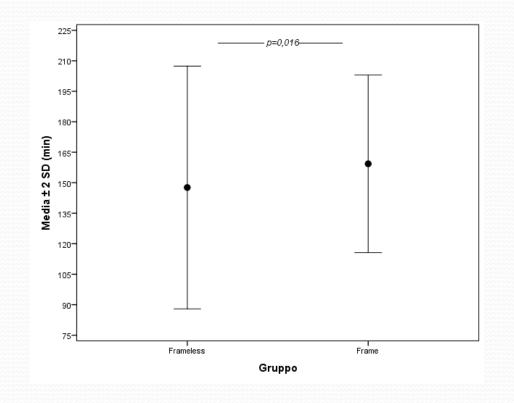
Frame	91,67%
Frameless	90,63%

Diagnostic Yield

		Study	Frame (%)	Frameless (%)
		Dorward and coll.	95	100
Range		McGirt/Woodworth and coll.	91	89
Frame 83,4 – 95% Frameless 88,8 – 100%	Smith e coll.	90	90	
		Dammers e coll.	89,6	88,8
	Lobao e coll.	83,4	91,7	
	Nishihara e coll.	94,9	97,4	
		Lu e coll.	95,2	89,4
		Harrisson e coll.		96,7

In a meta-analysis of 7471 biopsies Hall and coll. report a diagnostic yield of 91%

The absence of normal brain tissue samples lays in favor of limits in targeting rather than in the technique itself


Operating Room Times

Results

Additions to surgical time

Frame Frame positioning and centering CT scan

Frameless Anesthesiologic assistance and neuronavigation tracing

Operating Room Times

Discussion

Fra	ical Study me-based stereotactic biopsy remains an important diagnostic tool w antages over frameless stereotactic biopsy	with distinct	Smith and coll.	Frame-based technique
Jouma DOI 1	al of Neuro-Oncology (2005) 73: 173–179 10.1007/s11060-004-4208-3	© Springer 2005		
	N. L. DORWARD ¹ , T. S. PALEOLOGOS ² , O. ALBERTI ² & D. G. T. THOM	MAS ²		
	The advantages of frameless stereotactic biopsy over fra biopsy	me-based	Doi waru anu con.	Frameless technique
	ORIGINAL ARTICLE		Dorward and coll.	Frameless technique
	British Journal of Neurosurgery 2002; 16(2): 110–118	Taylor & Francis healthsciences		

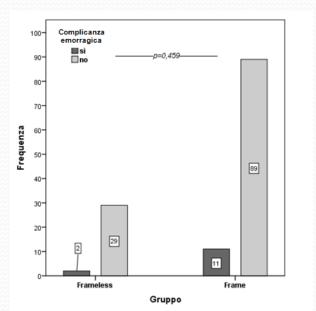
Important reduction of patient's discomfort

Compatibility with various anesthesiologic regimens

Complications

Clinical/neurological complications

Transient disphasia Postoperative seizure Worsening of hemiparesis Neurologic deterioration with rescue surgery


Hemorrhagic/radiological complications

Hemorrhage considered significant if >500mm³ on postoperative CT scan

Intralesional Intraparenchimal

Morbidity and mortality **Results**

Clinical/neu	rological
Frame	7,3%
Frameless	3,12%

90-80-Frequenza 70-60-101 50-40-30-20-31 1 10-8 Hemorrhagic/radiological Frameless Frame Gruppo

-p=0,391-

Complicanza neurologica

∎sì □no

120-

110-

100-

<u>Total morbidity</u>		Long time n	ime morbidity Mor		rtality	
Frame	14,68%	Frame	3,67%	Frame	0,92%	
Frameless	9,37%	Frameless	0%	Frameless	0%	

11%

6,45%

Frame

Frameless

Morbidity and mortality

Discussion

Variable definition of morbidity				
Frame	4 – 20,6%			
Frameless	1 – 19,6%			

Long-time morbidity

5 – 5,3%

Study	Frame (%)	Frameless (%)
Dorward and coll.	8,8	6,6
McGirt/Woodworth and coll.	13	15
Smith e coll.	4	1
Dammers e coll.	12,4	11,6
Lobao e coll.	9,8	13,8
Lu e coll.	20,6	19,6
Harrisson e coll.	-	4,7

Study	Frame (%)	Frameless (%)
Dorward and coll.	1,6	1,6
McGirt/Woodworth and coll.	1	1
Smith e coll.	0	1
Dammers e coll.	4	3,7
Lobao e coll.	1,9	2,7
Nishihara e coll.	0	0
Harrisson e coll.	-	2,7

<u>Range</u>	
Frame	
Frameless	

0-4% 0-3,7%

Conclusions

The frameless neuronavigation assisted brain biopsy is a reliable technique in terms of diagnostic yield and clinical-radiological outcome

Technological and methodological evolutions are improving diagnostic reliability

Our data are comparable with literature and confirm that this technique is not inferior to standardized frame-based stereotactic procedures

Furthermore it seems a more tolerable and time-saving procedure

Prospective randomized studies are needed to completely assess reliability, with particular reference to small deep lesions

Thank you for your attention

AZIENDA OSPEDALIERO UNIVERSITARIA PISANA

Firenze 07/04/2018

Dr Andrea Peluso