Neuro-COVID-19: sintomi e sindromi

Università di Pisa
Dip. di Medicina Clinica e Sperimentale UO Neurologia

OUTLINE

\checkmark History
\checkmark Pathomechanisms
\checkmark What neurological manifestations?
\checkmark Changing perspective: from neurological manifestations in Covid to Covid impact in care of neurological patients: the past, the present, the future
173.730 casi di COVID-19 ${ }^{\circ}$ di cui:
18.553 operatori sanitari ${ }^{\text {\$ }}$
22.586 deceduti

Età mediana dei casi: 62 anni

Overview

ISS 22.04.2020-Sorveglianza Integrata COVID-19 Italia

Decessi per Covid al 22 aprile 2020

Rate of published articles from Jan 1, 2000, to July 7

Review Article
Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic
Maryam Sharifian-Dorche ${ }^{a, b}$, Philippe Huot ${ }^{a}$, Michael Osherov ${ }^{a}$, Dingke Wen ${ }^{a, c}$,

Overview of public health and social measures in the context of COVID-19

Interim guidance
18 May 2020
https://www.who.int/publications/i/item/overview-of-public-health-and-social-measures-in-the-context-of-covid-19

Response of the multiple sclerosis community to COVID-19

Mult Scler. 2020 Sep;26(10):1134-1136.
Olga Ciccarelli, Jeffrey A Cohen and Alan Thompson

COVID-19 and Multiple Sclerosis: Predisposition and Precautions in Treatment
 SN Compr Clin Med 2020 Sep 3;1-6
 Shaghayegh Sadeghmousavi ${ }^{1,2} \cdot$ Nima Rezaei 3,4,5 (D)

Neuromuscular diseases and Covid-19: Advices from scientific societies and early observations in Italy

Corrado Angelini (1), Gabriele Siciliano (2)

```
Are people with neuromuscular disease (NMD) at higher risk?
What do people with NMD need to do to avoid infection?
What consequences does the risk of Covid-19 infection have for treatments
    used in people with NMD?
What needs to be done to assure ventilatory services during self-isolation
    (LVR bags, home ventilators etc.)
When should people with NMD seek admission if they develop symptoms of
    infection?
Can treatments for Covid-19 have effects on neuromuscular disease?
What should neuromuscular specialists do to assist Emergency Medical and
    Intensive Care decisions on admission to units, escalation of treatment, and
    ceilings of care in neuromuscular patients?
#2 What patient support should neuromuscular centres provide?
```


Dealing with immune-mediated neuropathies during COVID-19 outbreak: practical recommendations from the task force of the Italian Society of Neurology (SIN), the Italian Society of Clinical Neurophysiology (SINC) and the Italian Peripheral Nervous System Association (ASNP)
$>$ Neurol Sci. 2020 May 4;1-4. doi: $10.1007 /$ s10072-020-04448-9.
Raffaele Dubbioso ${ }^{1}$ (D) Eduardo Nobile-Orazio ${ }^{2}$ • Fiore Manganelli ${ }^{1} \cdot$ Lucio Santoro 1 • Chiara Briani ${ }^{3}$ • Dario Cocito ${ }^{4}$. Gioacchino Tedeschi ${ }^{5}$ • Vincenzo Di Lazzaro ${ }^{6}$. Gian Maria Fabrizi ${ }^{7}$ • on behalf of SIN, SINC and ASNP

Do patients with immune-mediated neuropathy have an increased risk of contracting SARS-CoV-2 infection?

What to do if a patient is on immunoglobulin therapy?

What to do if a patient is treated with plasmapheresis?

What to do if a patient

with immune-mediated neuropathy is positive for SARS-CoV-2?

Can I start treatment in a patient with/immune-mediated neuropathy?

Neurological manifestations of COVID-19 caused by SARS-CoV-2

> J Intern Med. 2020 Apr 30;10.1111/joim.13089. doi: 10.1111/joim.13089. Online ahead of print.

Clinical and Epidemiological Characteristics of 1,420 European Patients With Mild-To-Moderate Coronavirus Disease 2019

Characteristic	All patients $(\mathrm{N}=1420)$	Cured patients $(\mathrm{N}=264)$	$15-39$ yo $(\mathrm{N}=793)$	$40-59$ yo $(\mathrm{N}=551)$	>60 yo $(\mathrm{N}=76)$
Age					
Mean (SD) - yo	39.17 ± 12.09	34.1 ± 12.4	30.14 ± 4.8	48.4 ± 5.5	66.9 ± 6.9
Gender (N - \%)	$458(32.3)$	$168(63.6)$	$231(29.0)$	$190(34.5)$	$37(48.7)$
Male	$962(67.7)$	$96(36.4)$	$562(71.0)$	$361(65.5)$	$39(51.3)$
Female					
Ethnicity (N - \%)	$1298(91.4)$	$242(91.7)$	$715(90.2)$	$512(92.9)$	$71(93.4)$
European/Caucasian	$514(63.3)^{*}$	$200(76.0)^{*}$	$264(59.7)^{*}$	$215(65.7)^{*}$	$35(81.4) *$
Symptoms (N - \%)	$887(62.5)$	$154(58.3)$	$480(60.5)$	$370(67.2)$	$37(48.7)$
Asthenia	$274(19.3)$	$39(14.8)$	$163(20.6)$	$97(17.6)$	$14(18.4)$
Myalgia					
Dysphagia					
Comorbidities	$13(0.9)$	$0(0)$	$3(0.4)$	$4(0.7)$	$6(7.9)$
Neurological diseases					

Exploring the clinical association between neurological symptoms and COVID-19 pandemic outbreak: a systematic review of current literature

Davide Tiziano Di Carlo ${ }^{1,2}$. Nicola Montemurro ${ }^{1,2}$. Giandomenico Petrella ${ }^{1,2}$. Gabriele Siciliano ${ }^{3}$. Roberto Ceravolo ${ }^{3}$. Paolo Perrini ${ }^{1,2}{ }^{2}$

$\rightarrow 19$ studies
(from March $1^{\text {th }}$ to May 29

	Raw data	Rate (95\% CI)	N of articles
Demographic data N patients included in the analysis	12157		
Male patients	$2261 / 4460$	$50.6 \%(49.2-51.6 \%)$	19
Age (median, IQR)	$50.3(11.9)$	-	9
Comorbidity			
Hypertension	$1969 / 6321$	$31.1 \%(30-32.3 \%)$	10
Diabetes	$384 / 6321$	$13.5 \%(12.3-14.8 \%)$	8
Cardiovascular disease	$297 / 2842$	$10.5 \%(9.3-11.6 \%)$	7
Malignancy	$85 / 2561$	$3.3 \%(2.6-4 \%)$	6
Smoking	$277 / 3082$	$9 \%(8-10 \%)$	6
Neurological symptoms			
CNS	$136 / 2227$	$6.1 \%(5.1-7.1 \%)$	3
\quad Dizziness	$237 / 3163$	$7.5 \%(6.6-8.4 \%)$	10
Headache			
PNS	$407 / 869$	$46.8 \%(43.5-50.2 \%)$	5
Hypo/anosmia	$402 / 769$	$52.3 \%(48.7-55.8 \%)$	4
Gustatory disorders			
Muscular injury manifestation	$441 / 2806$	$15.7 \%(14.4-17.1 \%)$	7
Myalgia	$667 / 2732$	$24.8 \%(23.2-26.4 \%)$	6
Fatigue	$117 / 384$	$30.5 \%(25.9-35.1 \%)$	3
Fatigue or myalgia	$3222 / 3999$	$80.6 \%(79.3-81.8 \%)$	13
Other symptoms	$1908 / 3964$	$48.1 \%(46.6-49.7 \%)$	12
Fever	$1009 / 2976$	$33.9 \%(32.2-35.6 \%)$	98
Cough	$124 / 1502$	$8.3 \%(7-9.8 \%)$	7
Dyspnea	$357 / 1320$	$27.1 \%(24.7-29.5 \%)$	10
Pharyngodynia			
Digestive symptoms			

	Nonsever	95\% CI	Severe	95\% CI	P-value	N. studies
Comorbidity						
Hypertension	151/973	15.5\% (13.4-17.9\%)	121/371	32.6\% (28-37.6\%)	< 0.01	6
Cardiovascular disease	41/1127	3.6\% (2.7-4.9\%)	40/465	8.6\% (3.4-11.5\%)	< 0.01	5
Diabetes	66/973	6.8\% (5.4-8.6\%)	64/371	17.3\% (13.7-21.4\%)	< 0.01	6
Malignancy	19/915	2\% (1.3-3.2\%)	24/346	6.9\% (4.7-10.2\%)	< 0.01	5
Smoking	35/447	7.8\% (5.7-10.7\%)	18/164	11\% (7-16.8\%)	0.26	2
Neurological symptoms						
CNS						
Dizziness	24/228	10.5\% (7.2-15.2\%)	25/124	20.1\% (14-28.1\%)	0.02	2
Headache	67/837	8\% (6.3-10\%)	40/308	13\% (9.7-17.2\%)	0.01	6
PNS						
Hypo/anosmia	8/126	6.4\% (3.1-11\%)	3/88	3.4\% (0.7-9\%)	0.5	1
Gustatory disorders	9/126	7.1\% (36.4-13.2\%)	3/88	3.4\% (0.7-9\%)	0.7	1
Muscular injury manifestation						
Myalgia or fatigue	140/1189	11.8\% (10.1-13.7\%)	127/432	29.4\% (25.3-33.9\%)	<0.01	7

Infezione Covid19- Severa o non severa

PUTATIVE MECHANISMS

4) Effects on CNS:

- Neuroinflammation
- Neurodegeneration
- Demyelination
\rightarrow Azione diretta del virus a livello di SNC e SNP
\rightarrow Effetto mediato da azione del virus su endotelio
\rightarrow Effetto della tempesta citochinica
\rightarrow Effetto immuno-mediato

3) Lymphocyte and monocyte infiltration

4) Disrupted blood-brain barrier integrity

Understanding the Immunologic Characteristics of Neurologic Manifestations of SARS-CoV-2 and Potential Immunological Mechanisms

FLAIR image shows cortical hyperintensity in the right gyrus (yellow arrowheads) in both axial and coronal sections and subtle hyperintensity in the bilateral olfactory bulbs (white arrowheads) in the coronal section.

Electron microscope images of crown-shaped SARS-CoV-2 with protein spikes (red arrows) 22/09/2020

The spectrum of neuropathology in COVID-19

Neuropathol Appl Neurobiol. 2020 Sep 16.
Safa Al-Sarraj ${ }^{1,2 \#^{*}}$, Claire Troakes ${ }^{2 *}$, Brian Hanley ${ }^{3}$, Michael Osborn ${ }^{3}$, Mark P. Richardson ${ }^{4}$, Matthew
Hotopf ${ }^{4,5}$, Edward Bullmore ${ }^{6}$, Ian Everall ${ }^{4}$.

Figure 1: A: Perivascular T lymphocyte infiltration in the frontal lobe (CD3). B: occasional T lymphocytes in the white matter of the frontal lobe (CD3). C: activated mieroglial cells in the white matter and perivascular spaces in the frontal lobe (CD68), D: activated microglial cells in the white matter frontal lobe (CD68) (A, B $\times 640, \mathrm{C}, \mathrm{D} \times 400$)

Figure 2: A: Haemorrhagic infarction demonstrating necrotic areas and areas of recent haemorrhages associated with focal macrophage infiltration and mild proliferation of capillaries (haematoxylin and eosin stain) $\times 100, \mathrm{~B}$ and C higher power of necrotic and haemorrhagic areas in A showing macrophage

The spectrum of neuropathology in COVID-19

Neuropathol Appl Neurobiol. 2020 Sep 16.
Safa Al-Sarraj ${ }^{1,2 \#^{*}}$, Claire Troakes ${ }^{2 *}$, Brian Hanley ${ }^{3}$, Michael Osborn ${ }^{3}$, Mark P. Richardson ${ }^{4}$, Matthew Hotopf ${ }^{4,5}$, Edward Bullmore ${ }^{6}$, Ian Everall ${ }^{4}$.

Figure 3: A and B: focal heavy infiltration of the parenchyma of the medulla by inflammatory cells typical of what is called micro glial nodule but with no necrosis x 400 . C: The inflammatory cells are T lymphocytes in the same spot as A (CD3) and D: intense microglial cell activation in the same spot as B (CD68) $\times 400$.

COVID-19 associated myositis with severe proximal and bulbar weakness.
Muscle Nerve 2020 Sep;62(3):E57-E60.
Hui Zhang ${ }^{1, *}$, MD, PhD; Zeinab Charmchi ${ }^{1, *}$, MD; Roberta J Seidman ${ }^{2}$,
M.D. Yaacov Anziska ${ }^{1}$, MD; Vinodkumar Velayudhan ${ }^{3}$, DO; Jonathan Perk ${ }^{1, \#}$, MD, PhD

Biopsy of the left quadriceps muscle. Hematoxylin and eosin cryostat sections demonstrate multifocal predominantly perimysial perivascular lymphocytic inflammation (C and yellow arrows in D), with focal endomysial extension (black arrows in D). Multiple regenerating myofibers (white arrows in E) are recognized by their mild sarcoplasmic basophilia and enlargement of visible nuclei. There is upregulation of human leucocyte antigen (HLA) Class ABC on myofiber surfaces and sarcoplasmic staining by immunohistochemistry are identified by the brown staining of myofibers which was most consistent with an inflarmpatary myopathy (F). (scale bar $=50$ microns)

Coronavirus invasion

Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy Thrombosis Research 191 (2020) 9-14
Corrado Lodigiani ${ }^{\mathrm{a}, \mathrm{b}, *}$, Giacomo Iapichino ${ }^{\mathrm{c}}$, Luca Carenzo ${ }^{\mathrm{c}}$, Maurizio Cecconi ${ }^{\mathrm{d}, \mathrm{c}}$, Paola Ferrazzi ${ }^{\mathrm{a}}$,
Tim Sebastian ${ }^{\text {d }}$, Nils Kucher ${ }^{\text {d }}$, Jan-Dirk Studt ${ }^{c}$, Clara Sacco ${ }^{\text {a }}$, Bertuzzi Alexia ${ }^{\text {f }}$,
Maria Teresa Sandri ${ }^{\mathrm{g}}$, Stefano Barco ${ }^{\mathrm{d}, \mathrm{h}}$, on behalf of the Humanitas COVID-19 Task Force

	Intensive care unit$(n-61)$		General ward$(n=327)$		$\begin{aligned} & \text { Total } \\ & (N=388) \end{aligned}$	
Age (years), median (Q1-Q3)	61 (55-69)		68 (55-7		66 (55-75)	
Men	49/61	80.3\%	215/327	65.7\%	264/388	68.0\%
Body mass index (kg/m2)						
≤ 25	20/57	35.1\%	110/306	35.9\%	130/361	36.0\%
25-30	20/57	35.1\%	126/306	41.2\%	144/361	39.9\%
≥ 30	17/57	29.8\%	70/306	22.9\%	87/361	24.1\%
Overall duration of hospitalization (days), median (Q1-Q3)	18 (14-24)		9 (6-13)		10 (7-15)	
Cardiovascular risk factors						
Arterial hypertension on treatment	27/61	44.3\%	156/327	47.7\%	183/388	47.2\%
Dabetes mellitus on treatment	11/61	18.0\%	77/327	23.5\%	88/388	22.7\%
Dysilipidemia on treatment	7/61	11.5\%	69/327	21.1\%	76/388	19.6\%
Chronic renal dysfunction	9/61	14.8\%	52/327	15.9\%	61/388	15.7\%
Smoking	3/61	4.9\%	42/327	12.8\%	45/388	11.6\%
Active cancer	2/61	3.3\%	23/327	7.0\%	25/388	6.4\%
Solid	1		16		17	
Hematological	1		9		10	
Ongoing cancer therapy	1/61	1.6\%	10/327	3.1\%	11/388	2.8\%
Hormonal therapy	1		3		4	
Chemo/immuno-therapy	0		5		5	
Radiotherapy	0		2		2	
History of cancer	0/61	0\%	2/327	0.6\%	2/388	0.5\%
Chronic obstructive pulmonary disease	1/61	1.6\%	34/327	10.49\%	35/388	9.0\%
Prior thromboembolic events						
Coronary artery disease	7/61	11.5\%	47/327	14.4\%	54/388	13.9\%
Prior stroke	1/61	1.6\%	19/327	5.8\%	20/388	5.2\%
Peripheral atherosclerosis	5/61	8.2\%	48/327	14.7\%	53/388	13.7\%
Prior venous thromboembolism	0/61	0.0\%	12/327	3.7\%	12/388	3.1\%
Use of co-medications						
Aspirin	17/61	27.9\%	77/320	24.1\%	93/379	24.5\%
Vitamin K antagonists	0/61	0\%	16/329	4.9\%	16/388	4.1\%
Difect oral anticoagulants	2/61	3.3\%	15/329	4.5\%	17/388	4.4\%
ACE-inhibitors	6/61	9.8\%	47/329	14.3\%	53/388	13.7\%

Venous and arterial thromboembolic events in hospitalized COVID-19 patients.

Thromboembolic events	Intensive care unit			General ward			Total		
	n	\% of closed cases $(n=48)$	\% of imaging tests performed*	n	$\%$ of closed cases $(\mathrm{n}=314)$	\% of imaging tests performed*	n	\% of closed cases $(\mathrm{n}-362)$	\% of imaging tests performed
At least one thromboembolic event	8	16.7% ($95 \% \mathrm{Cl}$ 8.7\%-29.6\%)	-	20	$\begin{aligned} & 6.4 \%(95 \% \mathrm{Cl} \\ & 4.2 \%-9.6 \%) \end{aligned}$	-	28	$7.7 \%(95 \% \mathrm{Cl}$ 5.4\%-11.0\%6)	-
VTE	4	8.3\%	22\%	12	3.8\%	46\%	16	4.4\%	36\%
PE (\pm DVT)	2	4.2\%	25\%	8	2.5\%	36\%	10	2.8\%	33\%
Isolated pDVT	1	2.1\%	7\%	3	1.0\%	44\%	4	1.1\%	21\%
Isolated dDVT	0	-	-	1	0.3\%	13\%	1	0.3\%	13\%
Catheter-related DVT	1	2.1\%	50\%	0	-	-	1	0.3\%	50\%
Ischemic strone 09/2020	3	6.3\%	-	6	1.9\%	-	9	2.5\%	-
ACS/MI	1	2.1\%	-	3	1.0\%	-	4	1.1\%	-

Clinical characteristics and outcomes of inpatients with neurologic disease and COVID-19 in Brescia, Lombardy, Italy > Neurology. 2020 May 22;10.1212

ALL PATIENTS	Total $(\mathbf{n}=\mathbf{1 7 3})$	non-COVID-19 $(\mathbf{n}=\mathbf{1 1 7})$	COVID-19 $(\mathbf{n}=\mathbf{5 6})$	\boldsymbol{p}-value
Admitting neurological diagnosis				0.035
Cerebrovascular disease	$111(64.2 \%)$	$68(58.1 \%)$	$43(76.8 \%)$	
Epilepsy	$23(13.3 \%)$	$19(16.2 \%)$	$4(7.1 \%)$	
Inflammatory/Infectious disease	$9(5.2 \%)$	$9(7.7 \%)$	$0(0.0 \%)$	
Neoplastic	$3(1.7 \%)$	$3(2.6 \%)$	$0(0.0 \%)$	
Other	$27(15.6 \%)$	$18(15.4 \%)$	$9(16.1 \%)$	

PATIENTS WITH CEREBROVASCULAR DISEASE	Total $(\mathbf{n}=\mathbf{1 1 1)}$	non-COVID-19 $(\mathbf{n}=68)$	COVID-19 $(\mathbf{n}=\mathbf{4 3})$	\boldsymbol{p}-value
Cerebrovascular event				0.560
Transient ischemic attack	$13(11.7 \%)$	$8(11.8 \%)$	$5(11.6 \%)$	
Ischemic stroke	$85(76.6 \%)$	$50(73.5 \%)$	$35(81.4 \%)$	
Hemorrhagic stroke	$13(11.7 \%)$	$10(14.7 \%)$	$3(7.0 \%)$	

\rightarrow COVID-19 and non-COVID patients with stroke had similar baseline characteristics
 with a significantly lower number of patients with a good outcome ($n=11,25.6 \%$ vs $n=48,70.6 \%, p<0.001$).

Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young

Oaxley et al

Variable	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age - yr	33	37	39	44	49
Sex	Female	Male	Male	Male	Male
Medical history and risk factors for stroke \dagger	None	None	Hyperlipidemia, hypertension	Undiagnosed diabetes	Mild stroke, diabetes
Medications	None	None	None	None	Aspirin (81 mg), atorvastatin $(80 \mathrm{mg})$
NIHSS score \ddagger					
On admission	19	13	16	23	13
At 24 hr	17	11	4	19	11
At last follow-up	$\begin{gathered} 13 \\ \text { (on day 14) } \end{gathered}$	$\begin{gathered} 5 \\ \text { (on day } 10 \text {) } \end{gathered}$	NA; intubated and sedated, with multiorgan failure	$\begin{gathered} 19 \\ \text { (on day 12) } \end{gathered}$	$\begin{gathered} 7 \\ \text { (on day 4) } \end{gathered}$
Outcome status	Discharged to rehabilitation facility	Discharged home	Intensive care unit	Stroke unit	Discharged to rehabilitation facility
Time to presentation -hr	28	16	8	2	8
Signs and symptoms of stroke	Hemiplegia on left side, facial droop, gaze preference, homonymous hemianopia, dysarthria, sensory deficit	Reduced level of consciousness, dysphasia, hemiplegia on right side, dysarthria, sensory deficit	Reduced level of consciousness, gaze preference to the right, left homonymous hemianopia, hemiplegia on left side, ataxia	Reduced level of consciousness, global dysphasia, hemiplegia on right side, gaze preference	Reduced level of consciousness, hemiplegia on left side, dysarthria, facial weakness
Vascular territory	Right internal carotid artery	Left middle cerebral artery	Right posterior cerebral artery	Left middle cerebral artery	Right middle cerebral artery
Imaging for diagnosis	CT, CTA, CTP, MRI	CT, CTA, MRI	CT, CTA, CTP, MRI	CT, CTA, MRI	CT, CTA, CTP
Treatment for stroke	Apixaban (5 mg twice daily)	Clot retrieval, apixaban (5 mg twice daily)	Clot retrieval, aspirin (81 mg daily)	Intravenous t-PA, clot retrieval, hemicraniectomy, aspirin (81 mg daily)	Clot retrieval, stent, aspirin (325 mg daily), clopidogrel (75 mg daily)
Covid-19 symptoms 22/09/2020	Cough, headache, chills	No symptoms; recently exposed to family member with PCR-positive Covid-19	None	Lethargy	Fever, cough, lethargy

A first case of meningitis/encephalitis associated with SARS-Coronavirus-2

Takeshi Moriguchia, ${ }^{\text {a, }}$, Norikazu Harii ${ }^{\text {b }}$, Junko Goto ${ }^{\text {a }}$, Daiki Harada ${ }^{\text {a }}$, Hisanori Sugawara ${ }^{\text {a }}$, Junichi Takamino ${ }^{a}$, Masateru Ueno ${ }^{a}$, Hiroki Sakata ${ }^{a}$, Kengo Kondo ${ }^{a}$, Natsuhiko Myose ${ }^{a}$, Atsuhito Nakao ${ }^{c}$, Masayuki Takeda ${ }^{\text {d }}$, Hirotaka Haro ${ }^{\text {e }}$, Osamu Inoue ${ }^{f}$,
Katsue Suzuki-Inoue ${ }^{\mathrm{g}}$, Kayo Kubokawa ${ }^{\text {h }}$, Shinji Ogihara ${ }^{\mathrm{i}}$, Tomoyuki Sasakig ${ }^{\text {² }}$,
Hiroyuki Kinouchỉ, Hiroyuki Kojin ${ }^{\mathrm{k}}$, Masami Ito ${ }^{\mathrm{k}}$, Hiroshi Onishil, Tatsuya Shimizul, Yu Sasaki', Nobuyuki Enomoto ${ }^{\mathrm{m}}$, Hiroshi Ishihara ${ }^{\mathrm{n}}$, Shiomi Furuya ${ }^{\mathrm{k}}$, Tomoko Yamamoto ${ }^{\mathrm{k}}$, Shinji Shimada ${ }^{0}$

Neuromuscular presentations in patients with COVID-19

Vimal Kumar Paliwal ${ }^{1} \odot \cdot$ Ravindra Kumar Garg ${ }^{2}$ © \cdot Ankit Gupta ${ }^{1} \cdot$ Nidhi Tejan 3

Neurol Sci, Sep 2020
GBS

Table 4 Frequency of various demographic, clinical, and electrophysiological features and good outcome in patients with COVID-19-related GBS

Feature	Frequency
Number	39
Age (data available in 36 patients)	$21-85$ years, mean $=60.55$,
	median $=61$, mode $=70$
Males (data available in 35 patients)	$26(74.28 \%)$
Hyposmia/ageusia	$6(15.4 \%) / 7(17.9 \%)$
Time to onset of GBS (data available in 35patients)	$3-28$ days, mean $=13.91$ days,
	median $=14$, mode $=10$
Bifacial paralysis	$18(46.15 \%)$
Other cranial neuropathies	$9(23.07 \%)$
Respiratory involvement	$17(43.58 \%)$
Demyelinating/axonal (data available in 32 patients)	$24(75 \%) / 7(22 \%)$
Outcome (data available in 38 patients)	GOOD $=25(65.8 \%)$, POOR $=11(28.9 \%)$, DIED $=2(5.3)$

Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease

More to come with myositis in the offing

[^0]
Neuromuscular presentations in patients with COVID-19

Vimal Kumar Paliwal ${ }^{1}$ © \cdot Ravindra Kumar Garg ${ }^{2}$ (- Ankit Gupta ${ }^{1}$. Nidhi Tejan ${ }^{3}$
Neurol Sci, sep 2020

NEUROPATHIES

Referencel country	Type	Age/ sex	Clinical presentation	Respiratory involvement	Blood parameters/ RT-PCR	Electrophysiology	Neuroimaging	Treatment/outcome
$\begin{aligned} & \text { Ghiasvand } \\ & \text { et al./Ir- } \\ & \text { an }[66] \end{aligned}$	Symmetrical polyneuropathy	68/F	Fever, dry cough, myalgia, B/L lower limbs hypotonia with weakness with areflexia	Ground-glass opacities	Raised creatinine, CRP, lymphopenia	Not performed	Normal	Lopinavir/ritonavir, oseltamivir, mechanical ventilation, IV methylprednisolone/died
Abdelnour /UK [67]	Motor neuropathy	69/M	Lower limb weakness, knee/ankle areflexia, gait ataxia, sensory normal	Lower lobe pneumonia	Lymphocytopenia, raised CRP, LDH, ferritin	Not performed	Normal	Spontaneous recovery
Chaumont /France [68]	Encephalopathy with peripheral neuropathy	62/M	Confusion, memory loss, dysphagia, left facial palsy, asymmetrical quadriparesis, lower limb areflexia, upper limb hyperreflexia, action myoclonus, dysautonomia	Mild ARDS	Positive $\mathrm{lgM}, \mathrm{IgG}$ for SARS-CoV-2, positive RT-PCR nasopharyngeal swab	Demyelinating asymmetric motor polyradiculoneuropathy and moderate axonal sensorimotor neuropathy	Right MCA recent stroke, spine normal	Hydroxychloroquine, azithromycin, IVIg, rehab centre after 36 days, mRS 2
		72/M	Confusion, delusion, hallucinations, memory impairment, dysphagia, slow saccades, quadriparesis, hyperreflexia, dysautonomia	ARDS	Positive $\mathrm{lgM}, \mathrm{lgG}$ for SARS-CoV-2, positive RT-PCR nasopharyngeal swab	Demyelinating asymmetric motor polyradiculoneuropathy and moderate axonal sensorimotor neuropathy	$\begin{aligned} & \text { Normal } \\ & \text { brain/spine } \\ & \text { MRI } \end{aligned}$	Hydroxychloroquine, azithromycin, IVIg, rehab center after 50 days, mRS 4
		50M	Confusion, delusion, hallucinations, memory impairment, dysphagia, slow saccades, quadriparesis, hyperreflexia, dysautonomia	ARDS	Positive $\mathrm{lgM}, \mathrm{lgG}$ for SARS-CoV-2, positive RT-PCR nasopharyngeal swab	Lower motor neuron involvement, denervation of four limbs	$\begin{aligned} & \text { Normal } \\ & \text { brain/spine } \\ & \text { MRI } \end{aligned}$	Hydroxychloroquine, azithromycin, IVIg. methyl prednisolone, rehab centre after 76 days, mRS 4
		66/M	Confusion, delusion, hallucinations, memory impairment, dysphagia, slow saccades, quadriparesis, hyperreflexia, dysautonomia	ARDS	Positive IgM , IgG for SARS-CoV-2, positive RT-PCR nasopharyngeal swab	Demyelinating motor polyradiculoneuropathy	$\begin{aligned} & \text { Normal } \\ & \text { brain/spine } \\ & \text { MRI } \end{aligned}$	Hydroxychloroquine, azithromycin, IVIg, methyl prednisolone, discharged to home after 40 days, mRS 2

Neuromuscular presentations in patients with COVID-19
Neurol Sci, Sep 2020

Myositis/rhabdomyolisis

Table 2 Demographic, clinical, and laboratory parameters and outcome of patients with myositis/rhabdomyolysis secondary to COVID-19

Referencel country	Age/sex	Clinical presentation	Respiratory involvement	Blood parameters	Chest imaging	Neuroimaging	Treatment/outcome
$\begin{aligned} & \text { Uysal } \\ & \text { et al//Turkey } \\ & \text { [22] } \end{aligned}$	60/M	Myalgia, fatigue	Yes	Raised CK, CRP, LDH, ferritin	B/L ground-glass opacities	NA	HCQ, anti-viral, azithromycin
Valente-Acosta et al/Mexico [23]	71/M	Fever, dyspnea, cough, myalgia, generalized weakness	Yes	CK 8720 U/L, raised myoglobin, creatinine, LDH, LL-6, ferritin	B/L ground-glass opacities	NA	Ventilator, HCQ , anti-viral, tocilizumab
$\begin{aligned} & \text { Beydon } \\ & \text { et al./France } \\ & {[24]} \end{aligned}$	NA	Myalgias, lower limb proximal weakness, fever	No	Raised CPK, CRP, lymphocytopenia	B/L ground-glass opacities	B/L external obturator muscle and quadricipital oedema with contrast enhancement	NA/critical
Suwanwongse et al//USA [25]	88/M	Acute onset B / L thighs pain and weakness, fever, dry cough	No	Raised CPK, LDH	Left pleural effusion	Normal	IV fluids, furosemide, HCQ/improved
$\begin{aligned} & \text { Zhang } \\ & \text { et al./USA } \\ & {[26]} \end{aligned}$	38/M	Fever, dyspnoea, myalgia	Yes	Raised CPK, CRP, LDH	Right upper and middle lobe consolidation	NA	Azithromycin, IV fluids, HCQ, doxycycline/improved
Jin et al/China [27]	$\begin{gathered} 60 \text { years } \\ \mathrm{M} \end{gathered}$	Fever, cough, pain, and weakness in B / L lower limbs	Yes	Raised CPK, myoglobin, CRP, LDH, leukopenia	B/L ground-glass opacities	NA	Oxygen inhalation, opinavir, moxifloxacin, IV fluids, gamma globulin, plasma transfusion/mproved
Chan et al./USA [28]	$\begin{gathered} 75 \text { years } \\ \mathrm{M} \end{gathered}$	Generalized weakness, reduced appetite	Yes	Elevated CK, AST, ALT, troponin, LDH, CRP, D dimer, ferritin hematuria, normal EKG	Left lower lobe patchy opacity	NA	Antibiotics, hydroxychloroquine/improved
	$\begin{aligned} & 71 \text { years } \\ & \mathrm{M} \end{aligned}$	Repetitive leg twitching, generalized weakness, tingling/numbness legs	Yes	Elevated CK, BUN, creatinine, troponin, hematuria, EKG-AF	Multifocal pneumonia	Old lacunar infarct	Antibiotics, hydroxychloroquine, heparin, IV fluids/on mechanical ventilator
$\begin{aligned} & \text { Gefen } \\ & \text { et al./USA } \\ & {[29]} \end{aligned}$	$\begin{gathered} 16 \text { years } \\ \mathrm{M} \end{gathered}$	Fever, myalgia, shortness of breath, cola-coloured urine, muscle tenderness	No	Elevated CK (427,656 U/L), AST, ALT, procalcitonin, LDH, CRP	NA	NA	IV fluids/improved

The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies
${ }^{1,3}$ Peter J. Ferrandi, ${ }^{2,3}$ Stephen E. Alway, ${ }^{1,3}$ Junaith S. Mohamed*

\rightarrow Skeletal muscles and other cells in the muscles like satellite cells, leukocytes, fibroblasts, and endothelial cells express ACE-2. Therefore, it is postulated that skeletal muscles are susceptible to direct muscle invasion by SARS- CoV-2.
\rightarrow Other possible mechanisms suggested are immune complex deposition in muscles, release of myotoxic cytokines, damage due to homology between viral antigens and human muscle cells, and adsorption of viral protein on muscle membranes leading to expression of viral antigens on myocyte surface.
\rightarrow Whether these postulated mechanisms for COVID-19- related myositis are also responsible for myalgia is also not known.
22/09/2020

Presente: esiti e bilanci

Acute stroke management pathway during Coronavirus-19 pandemic

Neurological Sciences (2020) 41:1003-1005

Claudio Baracchini ${ }^{1}$ • Alessio Pieroni ${ }^{1}$ © \cdot Federica Viaro ${ }^{1} \cdot$ Vito Cianci 2 • Anna M. Cattelan ${ }^{3}$ • Ivo Tiberio ${ }^{4}$. Marina Munari ${ }^{5}$. Francesco Causin ${ }^{6}$

(...) "Compared with the same period in 2019, we have observed a half of minor strokes, TIAs, and transfers from spokes, along with longer onset-to-door and door-to-treatment times for major strokes. As a result, the number of patients who have undergone intravenous thrombolysis or bridging therapy (combined intravenous and thrombectomy) is decreased (- 26% and -30% respectively), while the number of primary thrombectomies is increased by 41\% " (...)

Sanità 24
 " 24 DRIR

Home Analisi Sanità risponde Scadenze fiscall Santtà in borsa

21 lug 2020
AZIENDE ERECIONI
㕇 Coronavirus: urgente un Piano nazionale di "rientro" delle liste di attesa

SECNALIBRO
FACEBOOK f TWITTER
di Tonino Acet ${ }^{*}$

Post-discharge persistent symptoms and healthrelated quality of life after hospitalization for COVID-19 J Infect. 2020 Aug 25;S0163-4453(20)30562-4.

Eve Garrigues ${ }^{1}$, Paul Janvier ${ }^{2}$, Yousra Kherabi ${ }^{1}$, Audrey Le Bot ${ }^{1}$, Antoine Hamon ${ }^{1}$, Hélène Gouze ${ }^{1}$, Lucile Doucet ${ }^{1}$, Sabryne Berkani ${ }^{1}$, Emma Oliosi ${ }^{1}$, Elise Mallart ${ }^{1}$, Félix
Corre ${ }^{1}$, Virginie Zarrouk ${ }^{1}$, Jean-Denis Moyer ${ }^{3}$, Adrien Galy ${ }^{1}$, Vasco Honsel ${ }^{1}$, Bruno
Fantin ${ }^{1}$, Yann Nguyen ${ }^{4}$

	Overall	Ward patients	ICU patients	P value
	$N=120$	$N=96$	$N=24$	
Age, years	63.2 (15.7)	64.1 (16.1)	59.6 (13.7)	0.208
Sex, male	75 (62.5)	56 (58.3)	19 (79.2)	0.099
Comorbidities				
Diabetes	26 (21.7)	22 (22.9)	4 (16.7)	0.698
Hypertension	56 (46.7)	45 (46.9)	11 (45.8)	1.000
Body mass index ($\mathrm{kg} / \mathrm{m}^{2}$)				<0.001
$<25, \mathrm{n}(\%)$	35 (29.2)	32 (33.3)	3 (12.5)	
$\geq 25, \mathrm{n}$ (\%)	57 (47.5)	37 (38.5)	20 (83.3)	
Micsing n (\%)	28 (23.3)	27 (28.1)	1 (4.2)	
Clinical features at admission				
Confusion	7 (5.8)	6 (6.2)	1 (4.2)	1.000
Cough	87 (72.5)	69 (71.9)	18 (75.0)	0.959
Dyspnoea	88 (73.3)	68 (70.8)	20 (83.3)	0.327
Myalgia	19 (15.8)	16 (16.7)	3 (12.5)	0.851
Diarrhoea	29 (24.2)	25 (26.0)	4 (16.7)	0.488
Admission data				
Length of stay in hospital, days	11.2 (13.4)	7.4 (5.4)	26.5 (22.3)	<0.001
I ength of ctay in IClI dave	(-	17.1 (15.7)	-
Persistent symptoms				
Cough	20 (16.7)	14 (14.6)	6 (25.0)	0.358
Chest pain	13 (10.8)	11 (11.5)	2 (8.3)	0.941
Fatigue	66 (55.0)	52 (54.2)	14 (58.3)	0.891
Dyspnoea	50 (41.7)	38 (39.6)	12 (50.0)	0.487
Ageusia	13 (10.8)	9 (9.4)	4 (16.7)	0.509
Anosmia	16 (13.3)	14 (14.6)	2 (8.3)	0.638
Hair loss	24 (20.0)	18 (18.8)	6 (25.0)	0.690
Attention disorder	32 (26.7)	28 (29.2)	4 (16.7)	0.327
Memory ${ }^{\text {a }}$ Ss 20	41 (34.2)	36 (37.5)	5 (20.8)	0.194
Sleep disorder	37 (30.8)	29 (30.2)	8 (33.3)	0.535

ESITI E BILANCI: OLFATTO

- donna, 55 anni
- Infezione da SARS-CoV2 in marzo
- 15 marzo comparsa di anosmia ed ageusia, nega altri segni e sintomi
- Tamponi nasali negativi, titolo anticorpale positivo (in agosto lgG index $=6.505$)
- Permane anosmia, percezione dei gusti primari senza chiara distinzione

Acute-onset smell and taste disorders in the context of COVID-19: a pilot multicentre polymerase chain reaction based case-control study

Á. Beltrán-Corbellinia (D) J. L. Chico-Garcíaa, J. Martínez-Poles ${ }^{\text {b.c }}$, F. Rodríguez-Jorge ${ }^{\mathrm{a}}$,
E. Natera-Villalba ${ }^{\mathrm{a}}$ (D), J. Gómez-Corral ${ }^{\text {a }}$, A. Gómez-López ${ }^{\mathrm{a}}$, E. Monreala ${ }^{\text {a }}$, P. Parra-Díaz ${ }^{\text {a }}$ (D),
J. L. Cortés-Cuevas ${ }^{\text {d }}$, J. C. Galán ${ }^{\text {d }}$, C. Fragola-Arnaue ${ }^{\text {, J. Porta-Etessam }}{ }^{\text {c.t. }, ~ J . ~ M a s j u a n ~}{ }^{\text {a }}$ (D) and A. Alonso-Cánovas ${ }^{\text {a }}$

> European Journal of Neurology 2020, 0: 1-4

Table 2 Description of smell and/or taste disorder (STD) features in COVID-19 and influenza patients

STD characteristic	COVID-19 $(n=31)$	Influenza $(n=5)$
Nasal obstruction, $N(\%)$	$4(12.9 \%)$	$4(80 \%)$
Smell disorder pattern	$14(45.2 \%)$	$0(0 \%)$
Anosmia, $N(\%)$	$9(29.0 \%)$	$4(80 \%)$
Hyposmia, $N(\%)$	$2(6.5 \%)$	$0(0 \%)$
Dysosmia, $N(\%)$	$14(45.2 \%)$	$4(80 \%)$
Taste disorder pattern	$7(22.6 \%)$	$1(20 \%)$
Ageusia, $N(\%)$	$8(25.8 \%)$	$2(40 \%)$
Hypogeusia, $N(\%)$	$21(67.7 \%)$	$5(100 \%)$
Dysgeusia, $N(\%)$		
Capable of distinguishing sweetness/		
\quad saltiness/bitterness, $N(\%)$	$21(67.7 \%)$	$2(40 \%)$
Pattern of onset of STD	$10(32.3 \%)$	$3(60 \%)$
Acute, $N(\%)$	$7.1(3.1)$	$9.8(4.8)$
Subacute, $N(\%)$		
Duration of taste/smell disorder, mean		
(SD), days		

Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study

Jerome R. Lechien ${ }^{1,2,3,4}$. Carlos M. Chiesa-Estomba ${ }^{1,5}$. Daniele R. De Siati ${ }^{1,6} \cdot$ Mihaela Horoi ${ }^{4}$.
Serge D. Le Bon ${ }^{4}$. Alexandra Rodriguez ${ }^{4}$. Didier Dequanter ${ }^{4}$. Serge Blecic 7. Fahd El Afia ${ }^{1,3}$. Lea Distinguin ${ }^{1,3}$. Younes Chekkoury-Idrissi ${ }^{1,3}$. Stéphane Hans ${ }^{3}$. Irene Lopez Delgado ${ }^{1,8}$. Christian Calvo-Henriquez ${ }^{1,9}$.
Philippe Lavigne ${ }^{1,10}$. Chiara Falanga ${ }^{1,11}$. Maria Rosaria Barillari ${ }^{1,11}$. Giovanni Cammaroto ${ }^{1,12}$. Mohamad Khalife ${ }^{13}$. Pierre Leich ${ }^{14}$. Christel Souchay ${ }^{14}$. Camelia Rossi ${ }^{15}$. Fabrice Journe ${ }^{2}$. Julien Hsieh ${ }^{1,16}$. Myriam Edjlali ${ }^{17,18}$. Robert Carlier ${ }^{18}$. Laurence Ris ${ }^{19}$. Andrea Lovato ${ }^{20}$. Cosimo De Filippis ${ }^{20}$. Frederique Coppee ${ }^{21}$. Nicolas Fakhry ${ }^{1,22}$. Tareck Ayad ${ }^{1,10} \cdot$ Sven Saussez ${ }^{1,2,4,13}$

Eur Arch Otorhinolaryngol 2020 Aug;277(8):2251-2261

367 cases of Covid
$\rightarrow 86 \%$ olfactory dysfunction
$\rightarrow 80 \%$ anosmya, 20% hyposmia
67-73\% recovered within 8 days

ESITI E BILANCI: MIALGIE

Autoimmune and rheumatic musculoskeletal diseases as a consequence of SARS-CoV-2 infection and its treatment

Rheumatol Int 2020 Oct;40(10):1539-1554.
 Vir Singh Negi ${ }^{1}$ ©

Reported with SARS-CoV-2
Clinical characteristics
Refs.
Musculoskeletal manifestations
Arthralgia-Myalgia
in 14.4-44\% of the cases
Early and transient features
[21]

Acute Myositis
Case report
Symptom of myalgia and proximal muscle

Elevate Creatine kinase (CK) level (25,384 IU/L)
MRI showed muscle edema
Negative MSA and MAAs

Estimating the impact of
ACTA MYOLOGICA 2020; XXXIX: p. 57-66
COVID-19 pandemic on
services provided by Italian
Neuromuscular Centers:
an Italian Association of
Myology survey of the acute
phase

		Outpatient visit and exams	Therapy				Services					
		Total	DH	Chronic home therapy	Clinical trials	Total	FKT	Psychological support	Home nursing service	Prenatal diagnosis		
Italy	Yes		16.7\%	64\%	39\%	93.3\%	63\%	43\%	7\%	66.7\%	33\%	87.5\%
	No	40.\%	22\%	7\%	3.4\%	37\%	57\%	93\%	33.3\%	67\%	12.5\%	
	Partial	$\begin{gathered} 43.3 \% \\ \begin{array}{c} \text { (urgencies } \\ \text { only) } \end{array} \\ \hline \end{gathered}$	14\%	$\begin{gathered} 54 \% \\ \text { (some) } \end{gathered}$	$\begin{gathered} \hline 3.3 \% \\ \text { (some) } \end{gathered}$							
North	Yes	11\%	63.6\%	41\%	89\%	63\%	34\%	0\%	84\%	20\%	77.5\%	
	No	44.5\%	23.4\%	12\%	5.5\%	37\%	66\%	100\%	16\%	80\%	22.5\%	
	Partial	$\begin{gathered} 44.5 \% \\ \text { (urgencies } \\ \text { only) } \end{gathered}$	13\%	$\begin{gathered} 47 \% \\ \text { (some) } \end{gathered}$	$\begin{gathered} \hline 5.5 \% \\ \text { (some) } \end{gathered}$							
Center	Yes	0\%	73\%	43\%	100\%	76\%	57\%	12.5\%	50\%	87.5\%	100\%	
	No	25\%	13\%	0\%	0\%	24\%	43\%	87.5\%	50\%	12.5\%	0\%	
	Partial	75% $\left(\begin{array}{c}\text { (urgencies } \\ \text { only) }\end{array}\right.$	13\%	$\begin{gathered} 57 \% \\ \text { (some) } \end{gathered}$								
South	Yes	0\%	60\%	25\%	100\%	62\%	56\%	20\%	50\%	75\%	100\%	
	No	50\%	20\%	0\%	0\%	38\%	44\%	80\%	50\%	25\%	0\%	
	Partial	$\begin{gathered} 50 \% \\ \text { (urgencies } \\ \text { onlv) } \end{gathered}$	20\%	$\begin{gathered} 75 \% \\ \text { (some) } \end{gathered}$								

Futuro: telemedicina

Diagnostic Improvements
Medical Association Diagnostic Guidelines

Natul
Disease Course

Tests and Exome Sequencing Longitudinal Clinical Data to Understand

Estimates of Progress from Diagnosis and Care Management Changes and Their Expected Impact in the Next Five Years

Care Management Improvements
Digital Monitoring Tools (e.g., Telemedicine)

Telemedicine in care

Modality	Role
Felehealth	Replace in-person visits, reduce travel efforts and costs, maintain connection with people who have lost ability to travel to clinic
Mobile health Allow for real-time access to clinic staff using relatively low-cost technology, dedicated apps can provide patients with information or monitor function in the patient's environment	
Remote monitoring platforms	Remote monitoring of well-being based on information from treatment devices (e.g., data collected by non-invasive or invasive ventilation machines, data collected from eye-gaze or communication platforms, or other connected devices)
Patient support groups	Loaner closets, peer-to-peer support groups, funding for research and clinical care
Advocacy groups	Raise awareness about the disease, fundraising, advocate for policy changes
Philanthrophy (foundations,	Provide or help raise funding for research and clinical care
private donors)	Raise awareness about the disease and treatment and research options
Newsletters/websites	Online access to one's own clinical and research information
Patient portal	$22 / 09 / 2020$

COVID-19 in people with multiple sclerosis: A global data sharing initiative

Liesbet M Peeters (D), Tina Parciak, Clare Walton, Lotte Geys, Yves Moreau,
Edward De Brouwer, Daniele Raimondi, Ashkan Pirmani (D), Tomas Kalincik, Gilles Edan,
Steve Simpson-Yap(D), Luc De Raedt, Yann Dauxais, Clément Gautrais (D), Paulo R Rodrigues, Landon McKenna, Nikola Lazovski, Jan Hillert, Lars Forsberg, Tim Spelman (D,
Robert McBurney, Hollie Schmidt, Arnfin Bergmann, Stefan Braune, Alexander Stahmann,
Rodden Middleton (D) Amber Salter (D), Bruce F Bebo, Juan I Rojas, Anneke van der Walt
Helmut Butzkueven, Ingrid van der Mei, Rumen Ivanov, Kerstin Hellwig,
Guilherme Sciascia do Olival, Jeffrey A Cohen (D) Wim Van Hecke, Ruth Dobson (D),
Melinda Magyari, Doralina Guimarães Brum, Ricardo Alonso, Richard Nicholas, Johana Bauer,
Anibal Chertcoff, Jérôme de Sèze, Céline Louapre, Giancarlo Comi and Nick Rijke

PublMed.gov

High utilityl
appropriateness Moderate utility/appropriateness Low utility/appropriateness

NMD follow-up	New or unstable NMD	All patients with discrepancy beween reported symptoms and abnormal
PN followup: stable or	New or unstable PN	examination findings
management of	New MG: well established diagnosicor unstable	Ald diorders second opinions for patients where nuances of physial
nuropathic pain	new/follow-up	examination will highly infuencemedical dection-making and diagnosic.
MG follow-up. stable	All patients with worsening symptoms to tridge	evaluation
Myosits followtye titabe	need and timeframe for further or more urgent	Primary management of unstable patients

A mobile app for patients with Pompe disease and its possible clinical applications
Giulia Ricci ${ }^{\text {a }}$, Sigrid Baldanzi ${ }^{\text {a }}$, Fabrizio Seidita ${ }^{\text {b }}$, Chiara Proietti ${ }^{\text {c }}$, Francesca Carlini ${ }^{\text {c }}$,
Silvia Peviani ${ }^{\text {c }}$, Giovanni Antonini ${ }^{\text {d }}$, Andrea Vianello ${ }^{\text {c }}$, Gabriele Siciliano ${ }^{\text {a,* }}$,
Italian GSD II group

WLANCGL PAPERWORK that is structured as a clary in which the pentient can sehedile heothis therapeutic infussoms by settivg the fist infiuton applint the followint oner) mportantly, collect veveral datareileted to her/his health status in real-wortid tramework

Interactive section

moten trannas yas
That h thougtt to be waflu for patiema to creativ traing vections mishs dithert esertion.
 personplez the motor traning progam, sact patient can set ip protocols of thusse easose if akteemens with ner/his physicians ans
prasbetherapists.

Telemedicine for neuromuscular disorders during the COVID-19 outbreak

Matteo Garibaldi ${ }^{1}$ © Gabriele Siciliano 2. Giovanni Antonini ${ }^{1}$

Valorizzazione delle scale cliniche!

Abstract

"... Validated scales for myopathies and neuropathies are quite disease-specific and difficult to use in remote consultation due to a number of predominantly examinerdependent items. We conceived the Myo-FRS and the N-FRS, two functional scales, which, rather than explore too much disease-specific tasks, are aimed to capture, basically through a functional ques- tionnaire, the overall characteristics of neuromuscular performance, both in myopathies and in neuropathies MYO-FRS and N-FRS have never been used before, however, they provide a practical and useful tool to assign a functional score, which reflects the overall neuromuscular impairment along the disease course"

\rightarrow The COVID-19 pandemic has forced a rapid and unprecedented reorganization of clinical care delivery worldwide, according to local geopolitic realty, local COVID-19 prevalence, practice or institutional structures.
\rightarrow Most diagnostic studies may be postponed unless in case of urgent need and the results would change management (e.g., new ALS, MG, immune-mediated neuropathy or myopathy).

[^0]: \rightarrow Acute paralytic disease-like GBS, encephalomyelitis or myositis, even without systemic symptoms, may represent the first manifestation of COVID-19.
 \rightarrow Anosmia, ageusia, other cranial neuropathies and lymphocytopenia are red-flags enhancing early diagnostic suspicion.
 \rightarrow In Miller-Fisher Syndrome,ganglioside antibodies against GD1b, instead of QG1b, were found; because the COVID-19 spike protein also binds to sialic acid-containing glycoproteins for cell-entry and anti-GD1b antibodies typically cause ataxic neuropathy, cross-reactivity between COVID-19-bearing gangliosides and peripheral nerve glycolipids was addressed.
 \rightarrow Elevated Creatine Kinase (>10,000) is reported in10\% of COVID-19-infected patients; two such patients presented with painful muscle weakness responding to IVIg indicating that COVID-19-triggered NAM is an overlooked entity.

